If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+14p+45=0
a = 1; b = 14; c = +45;
Δ = b2-4ac
Δ = 142-4·1·45
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4}{2*1}=\frac{-18}{2} =-9 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4}{2*1}=\frac{-10}{2} =-5 $
| -4(8x-6)+4(-5=5x)=-8 | | -79+3x=229-14x | | 3x+24/7+x+4/5=8 | | 30+2x+5=x+24 | | -3(5t-3)+4t=8t-2 | | -79+7x=107+x | | 2x+18+46=90 | | 0.15x+0.05(8-x)=0.10(12) | | -204+8x=51-7x | | 2n^2+11n=-9 | | 10n^2-10n+6=0 | | 98=w|7 | | 13x-24=14x+12 | | -x+90=20 | | 8x-11=2x-23 | | -198-10x=87+9x | | -4+5=-3(2y+1) | | -3^2-3(-3)+8=x | | 7x-(5x+2)=3x-7(9x-8) | | P(4,5)m=6 | | 6x+7=6(x-4) | | 5x-35-4x=11 | | 27=2(x+1)+3 | | -78+9x=58+13x | | 9x+14=6x+20 | | 14+6x.X=-2 | | x^2+7x-12.75=0 | | 4x3+6x2+8=0 | | -0.10(52)+0.35x=0.05(x-20) | | 20x-4=30x+2 | | -3/4s=-3 | | 8=-4-4a |